skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schwartz, Daniel A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 8, 2026
  2. I. ABSTRACT Bacteriophage (phage) infect, lyse, and propagate within bacterial populations. However, physiological changes in bacterial cell state can protect against infection even within genetically susceptible populations. One such example is the generation of endospores byBacillusand its relatives, characterized by a reversible state of reduced metabolic activity that protects cells against stressors including desiccation, energy limitation, antibiotics, and infection by phage. Here we tested how sporulation at the cellular scale impacts phage dynamics at population scales when propagating amongstB. subtilisin spatially structured environments. Initially, we found that plaques resulting from infection and lysis were approximately 3-fold smaller on lawns of sporulating wild-type bacteria vs. non-sporulating bacteria. Notably, plaque size was reduced due to an early termination of expanding phage plaques rather than the reduction of plaque growth speed. Microscopic imaging of the plaques revealed ‘sporulation rings’, i.e., spores enriched around plaque edges relative to phage-free regions. We developed a series of mathematical models of phage, bacteria, spore, and small molecules that recapitulate plaque dynamics and identify a putative mechanism: sporulation rings arise in response to lytic activity. In aggregate, sporulation rings inhibit phage from accessing susceptible cells even when sufficient resources are available for further infection and lysis. Together, our findings identify how dormancy can self-limit phage infections at population scales, opening new avenues to explore the entangled fates of phages and their bacterial hosts in environmental and therapeutic contexts. 
    more » « less
  3. Abstract To overtake competitors, microbes produce and secrete secondary metabolites that kill neighboring cells and sequester nutrients. This natural product-mediated competition likely evolved in complex microbial communities that included viral pathogens. From this ecological context, we hypothesized that microbes secrete metabolites that “weaponize” natural pathogens (i.e., bacteriophages) to lyse their competitors. Indeed, we discovered a bacterial secondary metabolite that sensitizes other bacteria to phage infection. We found that this metabolite provides the producer (aStreptomycessp.) with a fitness advantage over its competitor (Bacillus subtilis) by promoting phage infection. The phage-promoting metabolite, coelichelin, sensitizedB. subtilisto a wide panel of lytic phages, and it did so by preventing the early stages of sporulation through iron sequestration. Beyond coelichelin, other natural products may provide phage-mediated competitive advantages to their producers—either by inhibiting sporulation or through yet-unknown mechanisms. 
    more » « less
  4. Abstract We report superluminal jet motion with an apparent speed ofβapp= 1.65 ± 0.57 in the radio-quiet (RQ) low-ionization nuclear emission-line region (LINER) galaxy KISSR 872. This result comes from two-epoch phase-referenced very long baseline interferometry observations at 5 GHz. The detection of bulk relativistic motion in the jet of this extremely radio-faint active galactic nucleus (AGN), with a total 1.4 GHz flux density of 5 mJy in the 5.″4 resolution Very Large Array FIRST survey image and 1.5 mJy in the ∼5 mas resolution Very Long Baseline Array image, is the first of its kind in an RQ LINER galaxy. The presence of relativistic jets in lower accretion rate objects like KISSR 872, with an Eddington ratio of 0.04, reveals that even RQ AGN can harbor relativistic jets and provides evidence of their universality over a wide range of accretion powers. 
    more » « less
  5. Buchan, Alison (Ed.)
    Phages acquire bacterial genes and use them to alter host metabolism in ways that enhance phage fitness. To date, most auxiliary genes replace or modulate enzymes that are used by the host for nutrition or energy production. 
    more » « less
  6. Abstract Dormancy is an adaptation to living in fluctuating environments. It allows individuals to enter a reversible state of reduced metabolic activity when challenged by unfavorable conditions. Dormancy can also influence species interactions by providing organisms with a refuge from predators and parasites. Here we test the hypothesis that, by generating a seed bank of protected individuals, dormancy can modify the patterns and processes of antagonistic coevolution. We conducted a factorially designed experiment where we passaged a bacterial host (Bacillus subtilis) and its phage (SPO1) in the presence versus absence of a seed bank consisting of dormant endospores. Owing in part to the inability of phages to attach to spores, seed banks stabilized population dynamics and resulted in minimum host densities that were 30-fold higher compared to bacteria that were unable to engage in dormancy. By supplying a refuge to phage-sensitive strains, we show that seed banks retained phenotypic diversity that was otherwise lost to selection. Dormancy also stored genetic diversity. After characterizing allelic variation with pooled population sequencing, we found that seed banks retained twice as many host genes with mutations, whether phages were present or not. Based on mutational trajectories over the course of the experiment, we demonstrate that seed banks can dampen bacteria-phage coevolution. Not only does dormancy create structure and memory that buffers populations against environmental fluctuations, it also modifies species interactions in ways that can feed back onto the eco-evolutionary dynamics of microbial communities. 
    more » « less